CARACTERIZAÇÃO DE INIBIDORES PARA A PROTEASE DO VÍRUS DA FEBRE AFTOSA (FMDV - FOOT AND MOUTH DESEASE VÍRUS) Lb^{pro}

Gabriel Domingues dos Santos¹, Alyne Alexandrino Antunes², Daniel Moreno Garcia², Luiz Juliano³, Jorge Alexandre Nogueira Santos⁴, Wagner Alves de Souza Júdice⁵

Estudante do Curso de Medicina da UMC; e-mail:

gabrieldomingues182@yahoo.com.br¹

Mestre pelo programa Biotecnologia da UMC; aline-alexandrino@hotmail.com²

Mestre pelo programa Biotecnologia da UMC; danielm-g@hotmail.com²

Professor-pesquisador da UNIFESP; ljuliano@terra.com.br³

Professor-pesquisador da UMC; wagneras@umc.br⁴

Área de conhecimento: Enzimologia

Palavras- chave: Cisteíno-proteases, Inibidores, Ciclopaladados, Lb^{pro}, Febre Aftosa

INTRODUÇÃO

Cisteíno-proteases desempenham importante papel no metabolismo protéico celular, no processamento de pró-hormônios e pró-enzimas, e na degradação de proteínas da matriz extracelular e estão envolvidas em muitas patologias (II et al., 1993). Membro da família das cisteíno-proteases, a Lb^{pro} do vírus da febre aftosa (FMDV) está envolvida na clivagem do fator de iniciação eucariótica do hospedeiro (eIF4), GI e 4GII, facilitando a tradução viral e diminuindo a síntese de γ-Interferon favorecendo a replicação viral (GUARNÉ et al., 1998; SKERN et al., 1998). Pelo envolvimento em processos patológicos, as cisteíno-proteases são alvos no desenvolvimento de inibidores dentre eles a classe dos ciclopaladados. Os ciclopaladados são substâncias com propriedades de reação na ligação paládio-carbono e em estudos apresentaram atividade antitumoral e antiparasitária (CAIRES & MAURO, 1995; RODRIGUES et al., 2003). Em função da capacidade de inibição de cisteíno-proteases como as catepsinas lisossomais (CAIRES & MAURO, 1995), os ciclopaladados tornam-se moléculas promissoras no desenvolvimento de drogas antivirais em especial a Lb^{pro} do FMDV.

OBJETIVOS

O presente projeto de iniciação científica tem por objetivo o estudo da cisteíno-protease do vírus da febre aftosa Foot and Mouth Disease Virus (FMDV) frente a possíveis moléculas inibidoras de uma família de ciclopaladados apresentando variações nos agentes de ciclometalação.

METODOLOGIA

Os ensaios cinéticos da Lb^{pro} foi realizado em tampão borato/borax 50mM, pH 7,8. Alíquotas da enzima foi pré-incubada com DTT 2.5mM durante 5min a 35°C. Suas hidrólises foram seguidas pela medição da fluorescência (substrato Abz-KVQRKLKGAGQ-EDDnp $\rightarrow \lambda_{ex}$ =320nm e λ_{em} =420nm) em espectrofluorímetro Hitachi F2500. Os parâmetros cinéticos foram determinados por regressão não linear usando o programa Garfíc 5.0. Os ensaios de inibição da Lb^{pro} foram similares aos ensaios de hidrólise do substrato nos quais se procedeu a adição de concentrações crescentes de inibidor até a estabilização da queda da atividade enzimática. Com os

dados adquiridos calculou-se os valores de IC₅₀s e a determinação do mecanismo de inibição foi realizada de acordo com plote de Michaelis-Menten e plote de Lineweaver-Burk conjuntamente com os replotes das inclinações e interceptos.

MATERIAIS / INSTRUMENTOS

A construção do plasmídio foi realizado pelo prof. Tim Skern do Max F. Perutz do Laboratório do Departamento de Bioquímica Médica, Universidade de Vienna, Áustria. A enzima foi expressa e purificada de acordo (KIRCHWEGER et al., 1994; GUARNÉ et al., 2000) e gentilmente cedida pelo Dr. Jorge Alexandre Nogueira Santos do Departamento de Biofísica da UNIFESP. O substrato Abz-KVQRKLKGAGQ-EDDnp foi gentilmente cedido pela Prof. Dra. Maria Aparecida Juliano da UNIFESP e sua concentração determinada em função da massa molar e volume de solução preparada. Foram utilizados 31 compostos ciclopaladados nomeados por letras e números (uso interno do laboratório). Os compostos foram classificados em função de seu agente de ciclometalação e divididos nos grupos A (dmpa), B (N-benzil-Nmetiletanolamina), C (N-benzyl-2-nitroimidazol-acetamida), D (Cl-PyPheEt) e E (dmba), e em cada grupo os ciclopaladados diferenciavam-se em compostos moleculares e iônicos.

RESULTADOS

Os 31 compostos analisados (tabela 1) mostram que o ciclopaladado 35(B) possuindo o agente de ciclometalação Cl-PyPheEt na forma de complexo molecular, apresentou a melhor atividade inibitória (IC₅₀=0,012±0,003uM). O segundo melhor ciclopaladado denominado 14(B), também molecular e com mesmo agente de ciclometalação, mostrou um IC₅₀=0,024±0,001uM. Em geral os ciclopaladados foram bons inibidores da Lb^{pro} com valores de IC₅₀s abaixo de 1uM. Entretanto, quatro compostos SF12, RcPd, 01(A) e 10(A) (tabela 1) foram os que tiveram menor eficiência inibitória com valores de 2,91uM; 2,08uM; 2,4uM; 2,35uM, respectivamente.

A análise do mecanismo de ação do composto 70(A), através do plote Lineweaver-Burk e dos replotes das inclinações e interceptos (Figura 1), mostraram que este composto apresenta uma inibição reversível da Lb^{pro} como observada no mecanismo inibitório proposto na Figura 2.

CONCLUSÕES

Em função dos resultados obtidos, verificados que os compostos ciclometalados com paládio são promissoras moléculas no desenvolvimento de novos fármacos tanto para a febre aftosa que representa um grande problema econômico para a pecuária brasileira, além desse estudo poder ser utilizado como ferramenta indireta no estudo de outras proteases de picornavirus incluindo o poliovirus, vírus da hepatite A, rinovirus e vírus da encefalomiocardite cujas cisteíno proteases apresentam grande similaridade estrutural com a Lb^{pro}.

Tabela 1) Valores de IC50 e as Variações dos Compostos Ciclopaladados, conforme seu grupo, frente a Enzima Lb^{pro}

Inibição Lb ^{pro}					
SE11	0,19 <u>+</u> 0,01	RcPd-E11	$0,76 \pm 0,04$		
RE11	0.15 ± 0.01	RcPd-E12	$0,17 \pm 0,01$		
44(A)	$0,28 \pm 0,02$	RcPd-F11	$0,19 \pm 0,01$		
SE12	0.23 ± 0.01	RcPd-F12	$0,17 \pm 0,01$		

RE12	0.31 ± 0.02	RcPd	2,08 <u>+</u> 0,21
45(A)	$0,40 \pm 0,03$		
70(A)	$0,10 \pm 0,01$	Grupo D	IC50 µM
SF11	$0,77 \pm 0.03$	14(B)	0,024 <u>+</u> 0,001
RF11	$0,44 \pm 0,02$	35(B)	$0,012 \pm 0,001$
SF12	$2,91 \pm 0,14$	15(B)	$0,40 \pm 0,01$
RF12	$1,2 \pm 0,07$	36(B)	$0,056 \pm 0,003$

Grupo B	IC50 μM	Grupo E	IC50 μM
D2E11	0,41 <u>+</u> 0,01	01(A)	2,40 ± 0,13
D2E12	$0,56 \pm 0,01$	12(A)	$0,50 \pm 0,04$
D2F11	$0,45 \pm 0,02$	03(A)	$0,51 \pm 0,02$
D2F12	0.54 ± 0.03	13(A)	$0,29 \pm 0,01$
D2	0.42 ± 0.02	10(A)	$2,35 \pm 0,14$
D2L	0.46 + 0.02	. ,	, - ,

Figura 1) Plote Lineweaver-Burk e replotes das inclinações e interceptos da inibição da Lbpro pelo composto ciclopaladado 70(A).

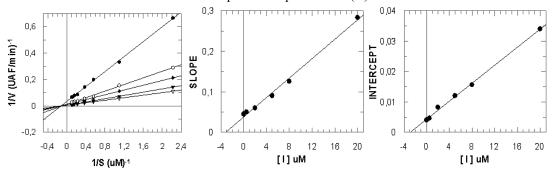
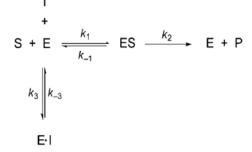



Figura 2) Mecanismo de Inibição da Lbpro pelo Composto 70(A)

REFERÊNCIAS BIBLIOGRÁFICAS

CAIRES, A. C. F.; MAURO, A. E. (1996). Química Nova, v.19, n.1, p. 51

GUARNE, A.; Hampoelz, B.; Glaser, W.; X. Carpena, J. Tormo, I. Fita, T. Skern. **J. Mol. Biol.**, 302 (2000), pp. 1227–1240

GUARNE, A.; Tormo, J., Kirchweger, K., Pfistermueller, D., Fita, I. & Skern, T. (1998). *EMBO J.* 17, 7469-7479..

II, K.; ITO, H.; KOMINAMI, E.; HIRANO, A. (1993) Virchows Arch A 423: (3) 185-194.

KIRCHWEGER, R.; Ziegler, E; Lamphear, B.J; D. Waters, H.D. Liebig, W. Sommergruber, F. Sobrino, C. Hohenadl, D. Blaas, R.E. Rhoads, T.J. Skern. **J. Virol.**, 68 (1994), pp. 5677–5684

RODRIGUES, E. G.; SILVA, L. S.; FAUSTO, D. M.; HAYASHI, M. S.; DREHER, S.; SANTOS, E. L.; PESQUERO, J. B.; CAIRES, A. C. F.; TRAVASSOS, L. R. R. G. (2003). **International Journal of Câncer,** v. 107, n. 3, p. 498-504.

SKERN, T., FITA, I. & GUARNE, A. (1998). J. Gen. Virol. 79, 301-307.

ZOTTIS, A. São Paulo, 2009. (Dissertação) Universidade de São Paulo.